Preemptive Detection of Electrical System
Anomalies in Particle Accelerators

Timur Guler
School of Data Science
University of Virginia
Charlottesville, VA, USA
tguler8 @ gmail.com

MacKenzye Leroy
School of Data Science

University of Virginia
Charlottesville, VA, USA

zuf9mc @virginia.edu

Abstract—Large-scale instruments are vital to the progression
of scientific discovery. Instrument downtime often stalls research;
by reducing downtime, experimenters can increase research
productivity and attain higher returns on investment. Our team
focused on instruments of high complexity, where electrical issues
in various subcomponents have the potential to cause problems
ranging from simple experimental failure to catastrophic system
damage. We propose a novel approach for preemptive detection
of electrical faults using a variety of machine learning methods
on signal data from Qak Ridge Laboratory’s Spallation Neutron
Source (SNS) particle accelerator. We compared four methods: a
prototypical network that uses Symbolic Fourier Approximation
for feature engineering and few shot learning for training, a
Gaussian Process Classifier, an Approximated Bayesian Neural
Network using Monte Carlo Dropout, and an LSTM Autoencoder.
We evaluate these methods based on their ROC curves and pro-
vide a general commentary on the advantages and disadvantages
of each method. Our results demonstrate capacity for identifying
the imminence of certain failure states and provide avenues for
future enhancement.

Index Terms—Feature Engineering, Deep Learning, Physics,
Signal Data

I. INTRODUCTION

System downtime has historically been a major impediment
to experimental production at the SNS since its inauguration.
More specifically, issues with the fifteen High Voltage Con-
verter Modules (HVCM) have hindered progress due to the
HVCM’s pivotal role in SNS operations. Over time, Oak Ridge
has made significant strides in reducing HVCM downtime
through mechanical system enhancements, including upgrades
to the SCR and modulator tanks and the addition of a smoke
alarm system for fire suppression. Despite this optimization of
the physical machine, issues persist. [1]

Oak Ridge is currently limited to reactive intervention.
While upgrades have reduced downtime, experimenters and
engineers can mitigate issues only after they have already oc-
curred, with significant temporal and financial repercussions.
The Oak Ridge team believes that if preemptive monitoring
and issue detection were implemented, downtime and its
consequences could be further reduced. This paper will explore
the potential of machine learning for maximizing uptime by
preventing HVCM issues.

Several components of the HVCM architecture collect
signal data during machine operation. Oak Ridge has long
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believed that this signal data could contain predictive power
for preemptively detecting issues.

This project’s two goals are exploratory in nature: to de-
termine the feasibility of using HVCM signal data to predict
issues, and to compare the efficacy of several model classes.

An ideal future implementation would constantly monitor
signal data from the HVCM and determine the likelihood of
impending issues, shutting down the machine when these were
imminent. A good model would need to both identify immi-
nent issues and avoid unnecessary machine shutdowns due to
Type I “false positives.” Additionally, such a model would re-
quire flexibility when encountering unseen states, necessitating
some mechanism for addressing uncertainty. These business
needs drove our decision-making throughout this exploratory
analysis. To satisfy these requirements, our team explored four
models: Gaussian Process Classification, Prototypical Network
with Few Shot Learning (PN-FSL), Approximated Bayesian
Deep Learning, and LSTM Autoencoders.

The format of our paper is as follows. First, we will give
an overview of our data sources. Next, we will discuss the
models we used and our specific implementations, as well
as transformations used for feature extraction. From here, we
will present and discuss our results. We will conclude with a
section on the implications of our analysis and potential areas
for further exploration.

II. DATA DESCRIPTION

The Oak Ridge team provided us with 208 labeled signal
observations — 158 from the “normal” class and 50 from the
“fault” class, all coming from one module of the HVCM.
For observations where a fault did occur, the metadata also
describes the type of fault that occurred. These labels describe
the state of the HVCM in the pulse immediately following the
observation, in accordance with our goal of preemptive detec-
tion as illustrated in Figure 1. These observations consist of
6100 timestamp values for each of the 32 HVCM components,
each taken at a rate of 1 sample every 400 ns.

III. METHODOLOGY

A. Prototypical Network with Few Shot Learning

The first method is an adaptation of the DPSN model
developed by Wensi Tang et al, with several modifications. [2]
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Fig. 1. Left: Example of a Normal Class Observation for a Single Component
Right: Example of a Fault Class Observation for the Component

The method consists of three main steps: 1) a Symbolic Fourier
Approximation (SFA), 2) a prototypical neural network trained
using the few shot learning framework, and 3) a kernel density
classification.

1) SFA: The SFA is a computationally efficient way to
represent large high-dimensional data. [3] A moving window
is applied to time series data, where each frame seen by the
window is grouped together in a histogram with similar frames
(based on the similarity of their Fourier coefficients). This
histogram is converted to a vector for each parameter, which
all together create one array for each observation. This array
has a (19,8) shape for each observation. It is helpful to think
of these arrays as then being placed into two buckets-one
consisting of normal observations and another of faults.

2) Prototypical Neural Network: The neural network con-
sists of three layers; a flattened layer, a dense hidden layer
with 80 nodes and LeakyRelu activation, and a final output
later of three nodes with LeakyRelu activation. The weights
of the model are trained as follows: at each iteration, 10
normal observations and 10 fault observations are randomly
sampled without replacement from the two buckets generated
by the SFA step, called the support set. These are passed
through the network, resulting in 3 activations in the final
nodes which act as the coordinates of the support set in the
learned space of the model. The vector average of the normal
and faults observations are taken, resulting in both a normal
and fault prototype. 25 new normal and fault observations
are then passed through the network, called the query set.
For each query set observation, a loss is calculated based
on its Euclidean distance from its respective prototype. See
Figure 2 for a representation of the learned space, including
the prototypes learned from the support set and the loss
calculated from the query set. This loss is then used to perform
backpropagation on the network and the process repeats for a
user-specified number of iterations. The intuition is that over
many iterations, the model will learn the weights and biases
where the prototypes will converge to a location in the learned
space, where normal observations are typically near the normal
prototype and fault observations are near the fault prototype.
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Fig. 2. PN-FSL Learned Space Loss Example

3) Kernel Density Classification: The final step is to per-
form a kernel density classification in the learned space of
the network on hold out data. Kernel density estimation has
been demonstrated as an effective non-parametric method to
estimate the probability density of a random variable. [4] Hold
out data is projected into the learned space, where a kernel
density estimation is performed. A threshold learned during
cross validation parameter tuning is then used, where any
observation with a lower density than the threshold (indicating
it is far from the center of the distribution) is classified as a
fault.

Some additional enhancements could include mapping to a
higher dimensional space, increasing the depth of the neural
network, or replacing the SFA feature engineering step with
an embedding using convolutional layers.

B. Gaussian Process Classification

1) Model Design: Gaussian Process Classification (GPC)
is a supervised, non-parametric, Bayesian method for clas-
sification. [5] GPCs assume that all seen (model fitting)
and unseen (model prediction) values of the target variable
represent a single observation of an N + M dimensional
Gaussian, with N and M here representing the number of
observations in the fitting and prediction set, respectively. The
covariance matrix of this Gaussian is computed by using a
kernel to calculate the similarity between each observation’s
input space. This structure produces a mean and variance for a
posterior Gaussian for each prediction observation conditioned
on the seen target observations used during fitting and the
known covariance matrix. Our target variable was binary
{normal, fault}, yielding results in the log-odds space, but
this methodology could easily be extended to multi-class
problems using a one-vs-rest approach.

2) Data Transformation: For the GPC model, our team
performed feature extraction on the raw pulse data using a
Fourier transformation. Fourier decomposition provides a one-
to-one mapping from the time space to the frequency space by



transforming a waveform into a summation of sinusoidal func-
tions of various frequencies and intensities. [6] This process is
commonly used on signal data in the machine learning field.
This transformation yields a vector of frequency intensities
for each component, resulting in an order-2 tensor for each
observation. This scale was not only too large for a GPC in the
practical sense, but also beyond the scope of the GPy package
we used to run the model in python. [7] As such, we chose to
predict fault likelihood separately for each HVCM component,
producing 19 separate fault likelihood distributions which were
then aggregated into a single distribution. To attain point
estimates necessary for the ROC curve, we used the expected
value of the aggregated distribution, which suited our problem
better than the traditional MAP approach.
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Fig. 3. Left: fault likelihood for individual components. Right: aggregated
fault likelihood

3) Hyperparameter Selection: In GPCs, model tuning is
done through kernel selection, which has two dimensions.
The first is the choice of kernel itself, which determines how
output similarity is calculated as a factor of input similarity.
We opted for the Matern Kernel based on superior observed
performance. [5] Due to the Gaussian assumptions of the
model, GPCs contain a built-in method for optimizing the
hyperparameters of the kernel, leaving kernel choice as the
only manual piece of hyperparameter tuning.

C. Bayesian Neural Network Approximation

Bayesian neural networks are structurally similar to standard
neural networks but use distributions for the weights between
nodes as opposed to singular deterministic values. By doing so,
Bayesian neural networks explicitly account for uncertainty in
their predictions. While this uncertainty quantification makes
them ideal for applications with small datasets, they can
quickly become computationally burdensome as the data size
grows. In recent years, Gal and Ghahramani have shown that a
more computationally efficient class of models are determinis-
tic models that use Monte Carlo Dropout during both training
and inference time [8]. They have shown that these models
approximate a traditional Bayesian neural network without the
same scaling issues as the more traditional methods.

Given the time series nature of our data and the binary
nature of our outcomes, we implemented a one-dimensional
convolutional neural network with a Binary Cross Entropy
loss function. Our model had four blocks of convolution and
pooling that fed into a 30-node dense layer featuring 10%
Monte Carlo Dropout. Each convolution and pooling block
consisted of two layers of one-dimensional convolution with
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Fig. 4. Approximate BNN Architecture

8 filters each, a kernel size of 2 and a Relu activation. Each
block then contained a one-dimensional max pooling layer
with a pool size of 2 and stride of 2. This architecture is
illustrated in Figure 4.

D. LSTM Autoencoder

Autoencoders are a type of neural network that is made up
of two sequential networks: an encoder and a decoder. Inputs
are compressed through the encoding stage and reconstructed
through the decoding stage such that the difference metric
between the original input and the reconstruction is minimized.
As An, Jinwon, and Sungzoon Cho discuss [9], autoencoders
can be used for rare case classification in anomaly detection
problems by training the model only on normal data and
observing the differences between the reconstruction error
of different input types. This framework allows a model to
be trained and evaluated using the entirety of the dataset
despite class imbalance. For the evaluation of this method, we
compare the reconstruction mean square error (MSE) between
the reconstructed signal and original input signal.

Given that signals are measured in the time domain, au-
toencoders are constructed with LSTM layers. The full ar-
chitecture of the LSTM autoencoder is displayed below in
Figure 5. Typical autoencoders are designed to reduce the
size of the encoded output as much as possible. However, the
performance of the autoencoder for anomaly detection depends
on the reconstruction rather than the compressed embedding.
Therefore, more layers of higher dimensionality were selected
in the architecture. To prevent overfitting, two dropout layers
were introduced in the encoding stage.



For each of the 19 selected features, a reconstruction MSE
was computed from the autoencoder. These 19 reconstruction
MSEs were used in a simple logistic regression model to
output a probability of normal/fault, which was used for
methodology evaluation.
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Fig. 5. LSTM Autoencoder Architecture

IV. RESULTS

To evaluate theses methodologies, we performed 5-fold
cross validation. Train and test predictions were recorded
for each fold, then concatenated to produce a train and test
ROC curve. The four ROC curves are displayed below in
Figures 6-9. Due to the stochastic nature of predictions in
the approximated BNN, 100 inferences were made on both
the training and test data for each fold and then averaged.

V. DISCUSSION

Since the overall goal of preemptive fault detection is to
reduce downtime of the machine, it is more important to
minimize false positive rates than it is to maximize true
positive rates. Otherwise, shutting down the machine from
false positives could inadvertently increase downtime. As such,
we pay particular interest in the portion of the ROC curves
where the false positive rate is close to zero. The two strongest
performers in this regard are the GPC and the Autoencoder.
However, there are several factors that would motivate the
use of approximated BNN and PN-FSL methodologies, such
as their ability to perform uncertainty estimation (like the
GPC) and group similar signals, respectively. We will compare
all four methodologies in terms of scalability, computational
complexity, and interpretability.

A. Scalability

The number of normal and fault observations in our dataset
is small compared to the frequency in which events occur
in the SNS. In addition, the number of normal events far
exceeds the number of fault events, so the implementation
of one or more of these methodologies requires a discussion
on how performance is expected to change with more data.
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Fig. 6. PN-FSL ROC
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Fig. 9. GPC ROC



The Autoencoder and approximated BNN methodologies are
particularly positioned to see a boost in performance with
more data. In the case of the Autoencoder, more normal events
should increase the robustness of the reconstructions, allow-
ing for greater confidence in identifying highly anomalous
events with low false positive rates in an imbalanced dataset.
However, variation between normal waveforms over time from
things like electrical component degradation or replacement in
the HVCM could decrease robustness. In this case, periodic
retraining on the most recent data is recommended. In a similar
fashion, the approximated BNN is expected to increase in
robustness with more data but could be at less risk of unwanted
bias from component degradation because of its uncertainty
consideration.

While the PN-FSL method is designed to perform well
with small datasets, the framework could improve with more
observations, which may allow clustering methods such as
Gaussian mixture models (GMM) to be used. have been shown
to be effective in other anomaly detection problems. [10] An
ideal number of clusters could be learned from a parameter
tuning process and GMM would provide a measurement of
uncertainty. The implementation of GMM struggles to find
meaningful clusters with our current dataset but could perform
better with more data. Unlike the other methodologies, GPC is
constrained by poor scalability, and requires a relatively small
data set for effective fitting. Still, creating a balanced subset
with more examples of rare fault types has potential to balance
accuracy and performance.

B. Computational Complexity

Since time between events in the SNS is measured in
microseconds, fast computation time is required in any im-
plementation. More complex methods like the PN-FSL or the
approximated BNN are expected to have a higher time to pre-
diction than the Autoencoder. In the PN-FSL method, the SFA
feature engineering step drives the high time to prediction. For
the approximated BNN, the culprit is the multiple inferences
required in the uncertainty estimation. GPC is at a risk of
high time to prediction with a time complexity of O(N?),
but appropriate sub-setting may lower prediction time while
maintaining high accuracy. The lack of preprocessing and
uncertainty estimation positions the Autoencoder to potentially
have the lowest time to prediction in implementation.

C. Interpretability

An obvious extension to the binary classification problem is
a multi-class classification for different types of faults. Further-
more, understanding how various groups of faults compare in
relation to each other could be useful in problem diagnostics.
This unsupervised approach to understand fault type clusters
can be achieved with the PN-FSL method described above.
Given that the output dimension space can be visualized if
kept under four dimensions, there is a potential for clustering.
Higher output dimensions can also be used and visualised with
techniques such as t-SNE. [11] As discussed above, additional
data and the introduction of GMM is a suitable candidate to

identify clusters. Figure X shows an example of a learned
space with four clusters (2 prominently normal clusters and
2 clusters where all the faults are of the same mechanical
failure).
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Fig. 10. PN-FSL Learned Space

The Autoencoder can also be expanded to include an output
clustering using reconstruction MSEs to identify similarities
between faults. Current SNS data retrieval allows for labeled
fault types, which makes supervised learning possible, specif-
ically in the approximated BNN and GPC. The approximated
BNN can output a probability distribution with multiple infer-
ences. The GPC methodology outputs normal/fault probability
distributions for each prediction, which makes visual inspec-
tion of differences in distribution possible. A one-versus-rest
model would be a strong extension to the GPC to address
multiclass classification of fault types.

VI. CONCLUSION

Our initial results demonstrate that HVCM signal data
contains predictive power for detecting imminent issues. For
the narrow goal of preemptive fault detection with this limited
dataset, the GPC and the LSTM Autoencoder had the initial
best results, with the LSTM Autoencoder having an additional
advantage of lower time complexity and the GPC having the
advantage of uncertainty measurements. The PN-FSL and the
approximated BNN are expected to see some improvement in
performance with more observations.

All four methods can be expanded to the fault type classifi-
cation problem, with the PN-FSL method having the advantage
in terms of interpretability. The PN-FSL method can also
be expanded to include GMM, which would also provide a
measurement of uncertainty.
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